A Whole-Cell Computational Model Predicts Phenotype from Genotype
نویسندگان
چکیده
Understanding how complex phenotypes arise from individual molecules and their interactions is a primary challenge in biology that computational approaches are poised to tackle. We report a whole-cell computational model of the life cycle of the human pathogen Mycoplasma genitalium that includes all of its molecular components and their interactions. An integrative approach to modeling that combines diverse mathematics enabled the simultaneous inclusion of fundamentally different cellular processes and experimental measurements. Our whole-cell model accounts for all annotated gene functions and was validated against a broad range of data. The model provides insights into many previously unobserved cellular behaviors, including in vivo rates of protein-DNA association and an inverse relationship between the durations of DNA replication initiation and replication. In addition, experimental analysis directed by model predictions identified previously undetected kinetic parameters and biological functions. We conclude that comprehensive whole-cell models can be used to facilitate biological discovery.
منابع مشابه
Association of the whole blood potassium polymorphism with resistant to saline in two sheep breeds of different climates of Iran
Abstract The whole blood potassium concentration has shown the bimodal distribution in sheep, which has been classified into LK and HK types; HK allele is recessive to LK with a single gene inheritance. This polymorphism showed different behavior in different environment, which could be due to adaptation process. This research was conducted on the Zel and kermani breed research station, which...
متن کاملParameters in Dynamic Models of Complex Traits are Containers of Missing Heritability
Polymorphisms identified in genome-wide association studies of human traits rarely explain more than a small proportion of the heritable variation, and improving this situation within the current paradigm appears daunting. Given a well-validated dynamic model of a complex physiological trait, a substantial part of the underlying genetic variation must manifest as variation in model parameters. ...
متن کاملSummary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models
Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehen...
متن کاملEmerging whole-cell modeling principles and methods.
Whole-cell computational models aim to predict cellular phenotypes from genotype by representing the entire genome, the structure and concentration of each molecular species, each molecular interaction, and the extracellular environment. Whole-cell models have great potential to transform bioscience, bioengineering, and medicine. However, numerous challenges remain to achieve whole-cell models....
متن کاملEffect of Regulatory Architecture on Broad versus Narrow Sense Heritability
Additive genetic variance (VA ) and total genetic variance (VG ) are core concepts in biomedical, evolutionary and production-biology genetics. What determines the large variation in reported VA /VG ratios from line-cross experiments is not well understood. Here we report how the VA /VG ratio, and thus the ratio between narrow and broad sense heritability (h(2) /H(2) ), varies as a function of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 150 شماره
صفحات -
تاریخ انتشار 2012